首页> 外文OA文献 >Analysis of the robustness of network-based disease-gene prioritization methods reveals redundancy in the human interactome and functional diversity of disease-genes
【2h】

Analysis of the robustness of network-based disease-gene prioritization methods reveals redundancy in the human interactome and functional diversity of disease-genes

机译:分析基于网络的疾病 - 基因优先排序方法的稳健性揭示了人类相互作用组的冗余和疾病基因的功能多样性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Complex biological systems usually pose a trade-off between robustness and fragility where a small number of perturbations can substantially disrupt the system. Although biological systems are robust against changes in many external and internal conditions, even a single mutation can perturb the system substantially, giving rise to a pathophenotype. Recent advances in identifying and analyzing the sequential variations beneath human disorders help to comprehend a systemic view of the mechanisms underlying various disease phenotypes. Network-based disease-gene prioritization methods rank the relevance of genes in a disease under the hypothesis that genes whose proteins interact with each other tend to exhibit similar phenotypes. In this study, we have tested the robustness of several network-based disease-gene prioritization methods with respect to the perturbations of the system using various disease phenotypes from the Online Mendelian Inheritance in Man database. These perturbations have been introduced either in the protein-protein interaction network or in the set of known disease-gene associations. As the network-based disease-gene prioritization methods are based on the connectivity between known disease-gene associations, we have further used these methods to categorize the pathophenotypes with respect to the recoverability of hidden disease-genes. Our results have suggested that, in general, disease-genes are connected through multiple paths in the human interactome. Moreover, even when these paths are disturbed, network-based prioritization can reveal hidden disease-gene associations in some pathophenotypes such as breast cancer, cardiomyopathy, diabetes, leukemia, parkinson disease and obesity to a greater extend compared to the rest of the pathophenotypes tested in this study. Gene Ontology (GO) analysis highlighted the role of functional diversity for such diseases.
机译:复杂的生物系统通常会在鲁棒性和脆弱性之间做出权衡,其中少量扰动会严重破坏系统。尽管生物系统对许多外部和内部条件的变化都具有较强的抵抗力,但即使是单个突变,也可能会严重干扰该系统,从而引起病态表型。在识别和分析人类疾病的序贯变异性方面的最新进展有助于对各种疾病表型潜在机制的系统理解。基于网络的疾病基因优先级排序方法在以下假设中对疾病中基因的相关性进行排序:假说是蛋白质彼此相互作用的基因往往表现出相似的表型。在这项研究中,我们使用在线孟德尔遗传在线数据库中的各种疾病表型,测试了几种基于网络的疾病基因优先排序方法相对于系统扰动的鲁棒性。这些扰动已被引入蛋白质-蛋白质相互作用网络或一组已知的疾病-基因关联中。由于基于网络的疾病基因优先排序方法基于已知的疾病基因关联之间的连通性,因此我们就隐藏疾病基因的可恢复性进一步使用了这些方法来对病理表型进行分类。我们的结果表明,一般而言,疾病基因是通过人类相互作用组中的多种途径相连的。此外,即使这些路径受到干扰,基于网络的优先级排序也可以揭示某些病理表型(如乳腺癌,心肌病,糖尿病,白血病,帕金森病和肥胖症)中隐藏的疾病基因关联性,而其余的病态表型则更大在这个研究中。基因本体论(GO)分析突出了这种疾病的功能多样性的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号